Greenhouse gas emissions from wetlands with different vegetation type

Jeroen de Klein¹, Frits Gillissen¹, Chih-Chung Wu¹, Irene Paredes Losada², Annelies Veraart³ ¹Aquatic Ecology and Water quality management group Wageningen University, Wageningen, The Netherlands ²Estación Biológica de Doñana, Sevilla, Spain ³Radboud University, Nijmegen, The Netherlands

Introduction

Area of free-floating plants on wetlands is increasing → effect on fluxes of CO2 and CH4

Introduction

(Contrasting) mechanisms of floating plants on GHG emission

• Oxygen depletion under floating vegetation:

 \rightarrow Anoxic decomposition; more CH4

Veraart at al. 2010 Biogeochemistry

- Temperature increase
 - \rightarrow lower oxygen (decomposition more enhanced than production)
- However, with floating plants less exchange with atmosphere

 Introduction of CH4 bubbles in rootzone

Air/Water gas exchange rate

Fate of methane in aquatic systems dominated by free-floating plants

Sarian Kosten ^{a, *}, Marcia Piñeiro ^a, Eefje de Goede ^{a, 1}, Jeroen de Klein ^b, Leon P.M. Lamers ^a, Katharina Ettwig ^c

(CrossMark

- Effect of floating biomass on CH4-ebulition
- 3 free-floating species (Azolla, Salvinia, Eichhornia)

Air/Water gas exchange rate

Eichhornia

Azolla

Micro-cosms experiments

- Microcosms (submerged, floating (Azolla, Lemna), controls, n=4)
- Temperature range 10-25 °C (measured in light and dark; 12/12h)
- Gasfluxes measured with Innova TGA

Results CH4 fluxes cosm-experiments

Temperature experiment

Accelerated effect of temperature on DO Veraart A.J. and de Klein J.J.M. (2011), PLoS ONE, 6(3), 2-7

Results gas fluxes cosm-experiments

continuous experiment (average fluxes 13 weeks, 20-25°C)

Results gas fluxes cosm-experiments

continuous experiment (average fluxes 13 weeks, 20-25°C)

Field measurements Doñana Wetlands

- 9 shallow lakes and ponds in marshland (single measurement, 6 experiments per lake)
- Different cover of submerged and floating vegetation
- Gas fluxes measured with floating chamber (Innova and LGR)

Field measurements Doñana Wetlands

Average gas fluxes (daytime) related to macrophytes density

To summarize

GHG fluxes from microcosms and shallow vegetated lakes

- Clear temperature effect on CH4 with floating plants (temperature threshold ?)
- With increasing floater dominance: shift from carbon sink to source
- In field conditions: highest CH4 emissions with median vegetation cover
- DO depletion effect of floaters seem to prevail above gas exchange limitation
- However, overall effect is variable (species, temperature, local conditions)

GHG potential

